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Abs(rac1. We investigate the thermal conductivity in one-dimensional quasi-periodic Toda 
lattice by means of the molecular dynamics technique. The lattice mnsisls of WO kinds 
of atom with different masses which are arranged according to the Fibonacci sequence. 
The temperature profile exhibits exponential behaviour as does the diatomic Toda lattice 
presented in our previous paper, The thermal conductivity is evaluated by separating 
the ballistically propagating pan from the total heat flow. Heat conduction in the Toda 
laltice will1 quasi-periodic m a s  distribution is found to obey Fourier's law. The resultant 
thermal conductivity is inversely proponional to local iemperalure and the magnitude is 
reduced remarkably in comparison with that of lhe diatomic Tbda lattice. 

1. Introduction 

Heat transport phenomena have been described phenomenologically in terms of 
Fourier's law. It is known that heat is carried by lattice vibrations in an electrically 
insulating material. Many attempts to derive Fourier's law from first principles have 
been performed using molecular dynamics techniques [l-91. However, most attempts 
have failed to present the normal thermal conductivity without external disturbances 
except in some special cases, e.g. a ding-a-ling model [7].  In 19S3, Moboss and 
Buttner [IO] suggested that a one-dimensional diatomic ?bda lattice could offer the 
normal thermal conductivity. More recently, Jackson and Mistriotis [ I l l  investigated 
the beat conduction for a larger diatomic Toda lattice and confirmed the existence of 
Fourier's law by means of a similar method. 

Although they seemed to present successfully the normal thermal conductivity, 
analyses of the thermal conductivity in terms of molecular dynamics so far could not 
be justified on account of at least two points. First, the temperature profile has been 
assumed to be linear to evaluate thermal conductivity and always approximated to a 
straight profile. However, the temperature profiles obtained numerically are rather 
exponential [5,10,11]. Second, another important point is that heat is transported 
not only through the diffusive process but also through the non-diffusive or ballistic 
process [5,11]. The non-diffusive part cannot give a finite thermal conductivity. 
Therefore, we have to separate the ballistic heat current from the total heat currents 
in  numerical experiments to evaluate the thermal conductivity. 

In a previous paper [U], taking account of the two important points mentioned 
above which had been overlooked so far, we investigated the existence of Fourier's law 
in the one- and two-dimensional diatomic Toda lattices by means of the molecular 
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dynamics technique. We found that the bending temperature profile reflects the 
temperature dependence of the thermal conductivity and confirmed the existence of 
Fourier's law by excluding the ballistic component of heat current. The resultant 
thermal conductivity is inversely proportional to the local temperature for both the 
one- and the two-dimensional lattices as well as the three-dimensional solids in the 
temperature region above the peak of thermal conductivity. 

Quasi-periodic systems have attracted much attention recently and have been 
studied theoretically and experimentally since the discovery of the quasi-crystalline 
phases in AI-Mn alloys [13]. The lattice vibrational properties of the quasi-periodic 
systems have been investigated numerically and theoretically [14,15], which are ex- 
pected to reflect the self-similarity of the lattice structure. Machida and Fujita [15] 
investigated a harmonic one-dimensional Fibonacci lattice and found that there is 
some specific vibrational state referred to as a critical state whose properties are 
intermediate between a localized and extended state as well as an electronic system. 
The corresponding frequency spectrum exhibits spiky structures. On the other hand, 
phonon transmission through quasi-periodic superlattices [16] is known to be affected 
by the quasi-periodic lattice structures. The transmission rate exhibits a spiky struc- 
ture in the quasi-periodic superlattice where two kinds of layers (GaAs and AI&) 
are stacked following the Fibonacci sequence. Thus, the characteristic features in 
the phonon transmission rate are expected to cause the vital phenomena in ther- 
mal conductivity. At very low temperatures where the phonon picture still survives, 
the thermal conductivity will be affected drastically by the critical states. At high 
temperatures, the anharmonic interatomic interaction couples the critical states and 
might give considerable changes in the thermal conductivity. The question is whether 
the effect of quasi-periodicity on the thermal conductivity at high temperatures is 
enhanccd or reduced . Little is known about the effect of the anharmonic potential 
on the lattice vibrational states in the quasi-periodic system. 

In this paper, we study the thermal conductivity of a one-dimensional quasi- 
periodic lattice with Toda potential using the molecular dynamics technique. 

The plan OC this paper is as follows: in section 2, we describe the model to be 
studied and mention the method of numerical simulation. We discuss the local rate 
of divergence of trajectories in the phase space to clarify the temperature region 
where the normal thermal conductivity is expected. In section 3, the temperature 
dependence of thermal conductivity is discussed from the temperature profiles and 
the thermal conductivity is estimated by excluding the ballistic heat current from 
the total current. We compare the results with those of the diatomic Ibda lattice. 
Summary and discussions are presented in section 4. 

2. One-dimensional Fibonacci Toda lattices 

We consider a one-dimensional Toda lattice whose mass distribution is governed by 
thc Fibonacci rule, i.e. an arrangement of two kinds of atom, A and B, which follows 
the Fibonacci sequence given by the rule F, = F,+, F,-? starting with F, = A and 
E: = AB. We refer to this lattice as the Fibonacci 'bda lattice hereafter. The masses 
of atonis A and B are 7 1 1 A  and ?ng, respectively. The total energy of the lattice is 

N r ,  N N  
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where p i  and ui are the momentum and displacement, respectively, of the ith atom. 
N is total number of atoms. The interatomic potential V(T) is a Toda potential 
defined by 

V ( v )  = ( b / a )  e x p ( - a y )  + br - b / a  (2) 

where r is the relative displacement and a and b are the potential parameters which 
are all set to unity in our paper. Figure 1 shows the mass configuration for the 
Fibonacci Toda lattice. To avoid the deformation of temperature profiles near the 
heat baths due to thermal boundary resistence, the specimen lattice is sandwiched 
with two buffer areas of monatomic Tbda lattices with ten atoms. As the monatomic 
Tbda lattice is integrable [17], there is no temperature gradient in the buffer areas. On 
the other hand, the mass arrangement of the specimen lattice following the Fibonacci 
sequence breaks the integrability and a finite temperature gradient is expected to 
appear as well as the diatomic lattice with the Tbda potential. 

F i p r e  1. Model and exprrimental situation for the one-dimenrionsl Fibonacci T d a  
lattice. Circles with label A or B denote the atoms with mas-  m~ and mg of 
specimen lattice. respectively. The magnitude of mA and mg are set to be 1.0 and 0.5, 
respectively. in the numerical experiments. ?here are buffer areas at both ends of tlie 
specimen lattice in order to avoid deformation of the temperature profile. The buffer 
areas are monatomic Tala IalticeS whme masse are also set to unity here. All panicles 
are connected with Toda potentials. The lattice is heated by the elastic collision of atoms 
between the lattice ends and tlie heat KSeNOilS whose temperatures are OH and OL. 

The end atoms are linked to the fixed walls with the ' M a  potential and interact 
impulsively with atoms of heat baths with prescribed temperatures 0, and 0,. The 
elastic collision between the end atoms and gas particles in the heat baths provides the 
energy exchange between the specimen lattice and the heat baths. The gas particles 
are assumed to have the Maxwell distribution in velocity of the form 

N ( v , O )  = J" h k B O  e..(-"'"?) 2k,0 (3) 

where kl is the mass of the gas particles, 0 is the temperature of the heat bath and 
k, is the Boltzmann constant which is set to unity hereafter. 

The equation of motion is solved numerically by means of Runge-Kutta-Gill 
method. In this work, we set VI,., = 1 , ~ n ,  = 0.5. The masses of buffer areas and 
gas particles are also set to unity. The time fraction interval of the simulations is 
taken suitably, so that the energy conservation in the non-equilibrium state will hold 
within the error of 0.1%. 

As is well known, stochastic behaviour is closely related to the irreversibility of 
the phenomena. Therefore, the investigation of the divergence of trajectories starting 

~~ ~~ ~ ~ ~ . .  
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Figure 2. Qe probability in the phase space that 
the system ahibits Uie stochastic behaviour versus 
the energy per atom lor both the Rbonami and the 
diatoniic lattices with N = 125. The characterislic 
time inlerval is Z = 96 for b l h  cases. 
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Figure 3. Temperature profiles for onedimensional 
inhomogeneous l b d a  lattices. The length of speci- 
men lattices is 250 atoms. The b l d  full CUN% de. 
note thme for the Fibonami lattices, and the thin 
full cuwes those for the diatomic lattices. Tie [em- 
peratures of the heal baths are (OH = 10, OL = 
2 . 5 ) , ( 0 ~  = B,OL = ~ 1 . 5 ) , ( @ ~  = ~ , O L  = 1)  
and (OH = ~ , Q L  = 0.5) from the top. respec- 
tively (all in Kelvin). 

from two points close to each other in phase space has been performed to check 
the global thermal equilibrium. However, in the non-equilibrium state, as denoted by 
Jackson and Mistriotis [ll], the dynamical behaviour must become stochastic within a 
short time interval whilst the incoming pulses still stay in the system, for the normal 
thermal conductivity. 

Whether the system exhibits irreversibility or not in the non-equilibrium state 
depends on the strength of non-linearity of the system, and the strength will change 
critically with temperature. We therefore investigate the divergence of trajectories 
in a short time interval with varying total energy for the onedimensional Fibonacci 
Toda lattice with N = 125 excluding buffer areas. The sound transit time interval 
is estimated to be ??, = 96 from the pulse and wave propagation experiments. The 
time interval is equal to that of the one-dimensional diatomic lattices. The type of 
divergence of trajectories is judged from the value of the quantity / I (  TJ defined by 

- Id(t j  - ~ ~ q r ~ p r . ~ ) f - ~ ( q ~ , ~ r ~ T ~ ) l z 1 .  (9 
Here d( t )  is the distance between two trajectories starting in the neighbourhood or 
a point in the phase space which is approximated for 0 < t < T, by a function 
of thc form A(qr.pr,Ts) exp[k(qr,pr.T,)l] and also by a linear function of the 
form B(qr,p, ,  qjt + C ! [ q r , p r > q )  using the least-squares method. Therefore, the 
negative 1.1 denotes that the divergence of trajectories is close to exponential behaviour 
and that the irreversibility can be expected. We calculated the local rate of divergence 
100 times at every value of energy per atom. This test was performed numerically 
and the ratios of the number M ,  of the exponential development to the total trials 
:\I were obtained for the energy per atom, namely E / N .  
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Figure 2 exhibits the resultant probability that the system offers the stochastic 
behaviour for both the Fibonacci and the diatomic Tbda lattices with 125 atoms. 
The dynamical behaviour for the Fibonacci Tbda lattice becomes stochastic above 
E / N  = 0.3 and saturates at around E / N  = 0.5. The dependence of the probability 
on the enera per atom is almost the same as that of the diatomic 'Ibda lattices. The 
critical value of the energy per atom is reduced with increasing system size. As the 
energy per atom is almost equivalent to the temperature of the system, the normal 
thermal conductivity is expected in the region T > 0.5 at least. 

3. Thermal conductivity 

The local temperature is defined to be twice the averaged local kinetic energy as 
follows: 

T,  = 3 ( p : / 2 ? n i ) .  (5) 

Here the angular brackets denote the time average. We investigate the Fibonacci Toda 
lattices with Ai = 250, 350 and 450. Each system has the buffer areas with ten atoms 
at both ends. The temperature profiles are investigated by varying the temperatures 
of the heat baths, whilst keeping their ratio OH/@, = 4. Figure 3 exhibits the 
resultant temperature profiles of the system with N = 250 together with those of 
the diatomic Tbda lattice of the same length. There clearly exist sharp drops in the 
temperature profiles at both ends of the lattices, which exhibit a thermal boundary 
resistance (Kapitza resistance) because of the existence of the acoustic mismatching. 
We can easily see that the temperature profiles vary exponentially with respect to 
the distance in the same way as for the diatomic Toda lattices. This is true for the 
other cases with 350 and 450 atoms. We can empirically approximate the temperature 
profiles by an exponential function of the form 

T ( % )  = T,(T,/T~)=/.~ (6) 

where TH and TL are the temperatures at  the ends of the specimen lattice and 2: 

measures the distance from the interface between the buffer area and the specimen 
lattice. The temperature profile (6)  yields the temperature gradient as 

( d T / d r )  = - ( l / N )  log (TL/TH) T.  (7) 

The absolute values of temperature gradients of the Fibonacci ?bda lattices become 
larger than those of the diatomic Toda lattices as the temperatures of the heat baths 
decrease. This means that the Fibonacci lattice has a smaller thermal conductivity, 
which will be confirmed below. 

The heat current J can be represented in terms of the local energy conservation 
law as 

J(i+I,e')-J(i,i-l)fa€,/al=QH~i,ltQL6i,N. (8) 

QH and QL are the energies per unit time exchanged with the heat baths of high 
and low temperatures, respectively. At the steady non-equilibrium state, summing 
equation (8) from the heat bath with OH, the time-averaged heat current yields 

(J(i + 1, i)) = (QH) (9) 
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because the time-dependent term vanishes. As can be seen from equation (9). the 
heat current no longer depends on the lattice position. We have used this as a 
criterion of the establishment of the steady non-equilibrium state in the numerical 
experiments. 

k we pointed out in the previous paper and also noted in section 1, the heat 
current consists of the two kinds of heat flow. One is the normal or the diffusive 
current J N  and the other is the ballistic or non-diffusive current J,: 

J = J N  + J,. (10) 

Here the normal heat current J N  is expected to obey Fourier's law: 

J N  = - K  dT/dx .  (11) 

On the other hand, the non-diffusive current JB is considered to depend on the 
tempcrature difference TB,H - TB,L between the two heat baths and on the system 
size N. It should be noted that TH is not equal to TB,H, and T ,  to T,,L, because of 
the existence of the thermal boundary resistance. 

Substituting equations (7) and (11) into (10). we have 

J = n(l/!!') l O g ( T H / T L )  T +  J B ( T B , H - T B , L > N ) ,  (12) 

Although the local temperature varies with the lattice position exponentially, the heat 
current is constant through the lattice in the steady non-equilibrium state. Therefore, 
the thermal conductivity K has to be inversely proportional to the local temperature 
in order to cancel the temperature dependence of the first term of the right-hand 
side of (12) as 

ti =(IT. (13) 

Here E is a parameter to be determined from the data in the numerical experiment. 
In order to confirm the validity of Fourier's law, the constant ( should be independent 
of the system size. In order to determine the parameter E ,  we rewrite the equation 
as follows: 

J . ~ / ~ O ~ ( T H / T L )  = < f J B ( r B , H  - TB,L, A')N/~O~(TH/TL). (14) 

Figure 4(u) exhibits the results of the one-dimensional Fibonacci Toda lattice. It 
should be noted that the data are independent of the lattice size. As the tempera- 
ture difference TB,H - TB,L decreases, the magnitude of JiV/ l o g ( T H / T L )  decreases 
monotonically and seems to achieve a finite value at zero temperature difference. 
Figure 4(b) shows the details at the small tcmperature differences together with the 
data for diatomic cases. Extrapolating the data to the origin, we have the finite values 
of < to be 15.9 and 36.8 for the Fibonacci and diatomic T4da lattices, respectively. 

4. Summary and discussion 

We have investigated the heat transport phenomena of the one-dimensional Fibonacci 
Toda lattice in terms of the molecular dynamics technique. We checked the local rate 
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300 

Figure 4. (U )  The heat current per unit length per l o g ( T ~ 1 T J  versus the temperature 
difference of the buffer areas for the one-dimensional Fibonacci W a  lattices. The open 
triangles. open squares and open circles denote the data for the lattices with N = 250, 
350 and 450. re.penivrly. The full cuwe is drawo usin% t l k  leastquare method. (6) Tlir 
heat cu~renl per unit lenptli per log(TH/TL) versus temperature difference of 1hr buter 
areas for the one-dimensional Fibonacci and diatomic Toda lattices at small temperalure 
differences l l i e  full circles denote tlie one-dimensional Fibonacci Toda lattices. There 
is no distinction between the data with respect to the lattice size for legibility. The open 
circles denote tlie diatomic lattices. The broken culyes are drawn using lhe least-squares 
method Io exhibit the extrapolation of the data to zero temperature difference. The 
exrrapolated magnitude of E becomes 15.9 for the Fibonacci To& lattice. The magnitude 
of the diatomic Toda lattice is 36.8. 

of divergence of trajectories in a phase space and found that the system exhibits 
stochastic behaviour in a short time interval above some critical temperature. The 
resultant temperature profiles are empirically expressed by an exponential function, 
as are those of the diatomic Toda lattices. The derivative of the temperature profiles 
is proportional to the local temperature. This requires that the thermal conductivity is 
inversely proportional to the local temperature. The heat current consists of diffusive 
and non-diffusive components. By excluding the non-diffusive part, the coefficient 
of thermal conductivity is determined from the experimental results and yields t = 
15.9 for the Fibonacci lattice. This is about 43% of that of the corresponding diatomic 
Tbda lattices (e = 36.8). The parameter is also identified to be independent of the 
lattice size. This gives evidence that the present Fibonacci Toda lattice can give the 
normal thermal conductivity. 

In this paper, we anticipated some novel phenomena in the thermal conductivity 
due to the possible existence of the critical states of the lattice vibration in the quasi- 
periodic structure. Comparing the results with those of the diatomic Toda lattice, as 
far as thermal conductivity is concerncd, there is no qualitative differcnce benveen the 
Fibonacci and diatomic Toda lattices except the magnitude of thermal conductivity. 
As is well understood, the anharmonic potential couples vibrational modes and smears 
the fine structure in the frequency spectrum. At the temperatures where the normal 
thermal conductivity is expected, the anharmonicity is so strong that the dynamical 
behaviour of the lattice vibrations becomes stochastic. The characteristic features 
of normal modes in the quasi-periodic system are mainly due to the interference 
between the reflected waves in the system. In general, the stochastic behaviour 
breaks the coherence. This is the reason why there is no essential difference in the 
heat conduction between the Fibonacci and diatomic Toda lattice. 
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Now we give a qualitative explanation why the thermal conductivity of the Fi- 
bonacci Toda lattice is more reduced than that of the diatomic Toda lattice. As was 
seen in figure 3, the difference between the temperature profiles of the Fibonacci and 
the diatomic Toda lattices with the same heat baths is small. The logarithm of the 
ratio TH/'TL of the Fibonacci Toda lattices is almost equal to that of the diatomic 
lattices. Therefore, the reduction in the thermal conductivity is attributed to the 
decrease in the heat ltow in the Fibonacci Toda lattices. 

B 

k :Vl!?(: 4 2 ;  
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Figure 5. The propagalion and atrenuation 01 an initial velociry impulse, where the 
ordinate is the .quared momenluuI ot the atoms: (a) the fih0WdCd Toda lattice; ( b )  the 
diatomic Toda lattics. 

The collisions between pulses are known to be important to the energy sharing 
between the particles in the lattice [U]. In this respect, we investigate the decay of 
a velocity pulse in the Fibonacci and diatomic Toda lattice. Figures 5(a)  and 5(b) 
exhibit the decay of the pulse followed by the emission of a train of small pulses 
for the Fibonacci and diatomic Toda lattices, respectively. The emission of the small 
pulses and the decay of the main pulse are more marked in the Fibonacci Toda lattice 
than in the diatomic lattice. In order to investigate quantitatively the time evolution 
of the energy distribution in the lattice, we evaluate the time-dependent participation 
ratio P( t )  defined by 

P ( t )  = (q(w/(q(m (15) 

where c, is the local energy of the i th  atom and the angular brackets denote the site 
averaging. The participation ratio takes the value of unity when the vibrational energy 
is shared equally to all atoms. On the other hand, it has the value of 1/N when the 
energy is concentrated on one atom, where N is the total number of atoms. Figure 6 
confirms that the collapse of the primary pulse is more rapid in the Fibonacci Toda 
lattice than in the diatomic lattice. As the collision between the primary pulses plays 
a dominant role in the enerpsharing mechanism, the rapid decay of the primary 
pulse may lead to the reduction in the diffusive part of the heat currents, namely the 
reduction in the normal thermal conductivity in the Fibonacci Toda lattices. 

According to the present resulrs, the thermal conductivity for the quasi-crystalline 
solids is expected to differ considerably in magnitude from that of crystals. The 
experiment to measure the thermal conductivity of the insulating quasi-crystalline 
solids is rather dilticult since it is hard to prepare a large enough specimen for the 
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Figure 6. The time evolution of the panicipation ratio lor 
the Abonacci Toda lattice and the diatomic lattice. 

heat conduction experiment. This is the main reason why we undertook a numerical 
simulation of the heat conduction in the one-dimensional quasi-periodic model solid. 

In higher dimensions, the quasi-periodic structure is modelled with the Penrose 
lattice in two dimensions and icosahedral structure in three dimensions. Therefore, it 
would be worthwhile to investigate the thermal conductivity by means of the molecular 
dynamics technique in these aperiodic structures. 
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